“The only way to learn mathematics is to do mathematics.”

Paul Halmos

Here is a list of my publications and preprints. The years indicate when the results in the papers were proven.

- 2020:
**Kauffman bracket skein module of the connected sum of handlebodies: A counterexample**, with J. H. Przytycki,*Manuscripta Math.*, DOI: 10.1007/s00229-021-01288-5, e-print: arXiv:2005.07750. - 2020:
**On framings of links in 3-manifolds**, with D. Ibarra, J. H. Przytycki, G. Montoya-Vega, D. Weeks,*Canad.**Math.**Bull.*, DOI: 10.4153/S000843952000079X, e-print: arXiv:2001.07782. - 2019:
**A Generalization of the Gram determinant of type A**, with S. Mukherjee, D. Ibarra, J. H. Przytycki,*Topology Appl.*(accepted), e-print: arXiv:1905.07834. - 2018:
**Schur multipliers and second quandle homology,**with S. Mukherjee D. Ibarra, T. Nosaka and J. H. Przytycki,*J. Algebra*552 (2020), 52–67, DOI: 10.1016/j.jalgebra.2019.12.027, e-print: arXiv:1812.04704. - 2018:
**On multiplying curves in the Kauffman bracket skein algebra of the thickened four–holed sphere,**with S. Mukherjee, J. H. Przytycki, M. Silvero and X. Wang,*J. Knot Theory Ramifications*(to appear), e-print: arXiv:1805.06062.

Scholarly Books and Articles

- 2020:
**Lectures in knot theory**:**An Exploration of Contemporary Topics**,**Springer Universitext**(in preparation, accepted for publication), with J. H. Przytycki, D. Ibarra, G. Montoya-Vega, and D. Weeks. - 2020:
**Chapter 63: Skein modules of 3-manifolds and Chapter 69: Kauffman bracket skein modules of 3-manifolds**, with J. H. Przytycki and H. Wong,**Encyclopedia of Knot Theory**,*Chapman and Hall/CRC Press*(2020), DOI: 10.1201/9781138298217, ISBN: 9781138298217.